Interplay between human microglia and neural stem/progenitor cells in an allogeneic co-culture model
نویسندگان
چکیده
Experimental neural cell therapies, including donor neural stem/progenitor cells (NPCs) have been reported to offer beneficial effects on the recovery after an injury and to counteract inflammatory and degenerative processes in the central nervous system (CNS). The interplay between donor neural cells and the host CNS still to a large degree remains unclear, in particular in human allogeneic conditions. Here, we focused our studies on the interaction of human NPCs and microglia utilizing a co-culture model. In co-cultures, both NPCs and microglia showed increased survival and proliferation compared with mono-cultures. In the presence of microglia, a larger subpopulation of NPCs expressed the progenitor cell marker nestin, whereas a smaller group of NPCs expressed the neural markers polysialylated neural cell adhesion molecule, A2B5 and glial fibrillary acidic protein compared with NPC mono-cultures. Microglia thus hindered differentiation of NPCs. The presence of human NPCs increased microglial phagocytosis of latex beads. Furthermore, we observed that the expression of CD200 molecules on NPCs and the CD200 receptor protein on microglia was enhanced in co-cultures, whereas the release of transforming growth factor-β was increased suggesting anti-inflammatory features of the co-cultures. To conclude, the interplay between human allogeneic NPCs and microglia, significantly affected their respective proliferation and phenotype. Neural cell therapy including human donor NPCs may in addition to offering cell replacement, modulate host microglial phenotypes and functions to benefit neuroprotection and repair.
منابع مشابه
Microglia as a stem cell
Microglia is considered the only cell population of mesodermal origin, which comprises 10% of the cells in brain parenchyma. Recent neural stem cell (NSC) studies demonstrate that the brain has regenerative potential. NSCs do not give rise to microglial cells, however indicating that NSCs alone cannot complete the regenetion of the brain. Although the role of microglia is not fully understood, ...
متن کاملCurcumin attenuates harmful effects of arsenic on neural stem/progenitor cells
Objective: Arsenic, an environmental pollutant, decreases neuronal migration as well as cellular maturation and inhibits the proliferation of neural progenitor cells. Curcumin has been described as an antioxidant and neuroprotective agent with strong therapeutic potential in some neurological disorders. Human adipose-derived stem cells (hADSCs), a source of multipotent stem cells, can self-rene...
متن کاملCross-Talk between Human Neural Stem/Progenitor Cells and Peripheral Blood Mononuclear Cells in an Allogeneic Co-Culture Model
Transplantation of human neural stem/progenitor cells (hNSCs) as a regenerative cell replacement therapy holds great promise. However, the underlying mechanisms remain unclear. We, here, focused on the interaction between hNSCs and allogeneic peripheral blood mononuclear cells (PBMCs) in a co-culture model. We found that hNSCs significantly decrease the CD3+ and CD8+ T cells, reduce the gamma d...
متن کاملMicroglia as a stem cell
Microglia is considered the only cell population of mesodermal origin, which comprises 10% of the cells in brain parenchyma. Recent neural stem cell (NSC) studies demonstrate that the brain has regenerative potential. NSCs do not give rise to microglial cells, however indicating that NSCs alone cannot complete the regenetion of the brain. Although the role of microglia is not fully understood, ...
متن کاملP 104: Effects of Human Neural Stem Cells in Cure Neuroinflammation of Traumatic Brain Injury
Traumatic brain injury (TBI) is defined as an external mechanical injury to the brain. Neuroinflammation plays a vital role in the pathophysiology of TBI. Microglia and astrocytes play a central role in the initiation and regulation of inflammation. Numerous pro-inflammatory mediators including cytokines, chemokines, reactive oxygen species (ROS) and nitric oxide (NO) released by microglia. In ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2013